Sequencing What knowledge will of topics students develop? (Including key terminology)	What skills will students develop? (Including literacy & numeracy)	Assessment opportunities	Homework opportunities	Personal development (Ursuline Values, Catholic Social Teaching, Cultural Capital, Cross- curricular, Careers)	Curriculum Links
 Algebraic Introduce proofs including proof by contradiction Algebraic fractions To multiply fractions, cancel common factors, multiply the numerators and denominators. Add and subtract two fractions Partial fractions – Splitting the fractions Dealing with repeated roots Algebraic division including dealing with improper fractions 	 understand that various types of proof can be used to give confirmation that previously learnt formulae are true, and have a sound mathematical basis; understand that there are different types of proof and disproof (e.g. deduction and contradiction), and know when it is appropriate to use which particular method; be able to use an appropriate proof within other areas of the specification later in the course. be able to add, subtract, multiply and divide algebraic fractions; know how to use the factor theorem to shown a linear expression of the form (a+bx) is a factor of a polynamial; 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning Research opportunities: Which famous Mathematicians discovered various proofs that are explored in this chapter.	Courageous and Resilient Proofs often involve demonstrating a statement holds true for all values. This process may involve working with unfamiliar or challenging concepts and requiring persistence and resilience in overcoming obstacles. Truth and Integrity Exposure to mathematical journals or articles that showcase different approaches to proofs. Computer science Physics Software developer mathematician research scientist	Algebraic expression Fractions

		 know how to use the factor theorem for divisors of the form (a+bx); be able to simplify algebraic fractions by fully factorising polynomials up to cubic. be able to split a proper fraction into partial fractions; be able to split an improper fraction into partial fractions, dividing the numerator by the denominator (by polynomial long division or by inspection). 				
Functions and graphs	 Setting up modulus functions, solving and sketching them Definition of a function and using mappings Composite functions and inverse functions Sketching modulus functions involving transformations Using combinations of transformations to 	 understand what is meant by a modulus of a linear function; be able to sketch graphs of functions involving modulus functions; be able to solve equations and inequalities involving modulus functions. be able to work out the domain and range of functions; know the definition of a one- one and a many-one mappings; 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning	Tolerant of the variety of methods that could be used to help sketch key points on a graph Computer Science Science STEM PE Telecommunications Engineering Construction	Graphs and transformatio ns

	solve modulus problems	 be able to work out the composition of two functions; be able to work out the inverse of a function and sketch its graph; understand the condition for an inverse function to exist. understand the effect of simple transformations on the graph of y = f(x) including sketching associated graphs and combinations of the transformations: y = af(x), y = f(x) + a, y = f(x + a), y = f(ax); be able to transform graphs to produce other graphs; understand the effect of composite transformations on equations of curves and be able to describe them geometrically. 			Astronomy Insurance agents Bankers Economists	
Sequence and series	 Arithmetic sequences Arithmetic series Geometric sequence Geometric series Sum of infinity Sigma notation 	 use functions in modelling, including consideration of limitations and refinements of the models. know what a sequence of numbers is and the meaning of finite and infinite sequences; know what a series is: 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions	Discerning and Joyful Students can appreciate sequences as finite and infinite sums. Option for the Poor and Vulnerable Care for God's Creation	Nth term for linear and quadratic sequences

Recurrence	 know the difference 	3. Past exam Availability of online
relations	between convergent and	questions tutorials or videos that
 Modelling with 	divergent sequences;	4. Opportunit demonstrate the
series	 know what is meant by 	ies for process of finding
	arithmetic series and	flipped Arithmetic and
	sequences;	learning Geometric series for
	 be able to use the standard 	different functions.
	formulae associated with	Physics
	arithmetic series and	Computer Science
	sequences;	Economics
	 know what is meant by 	Electrical Engineer
	geometric series and	Financial Analyst
	sequences;	Game Developer
	 be able to use the standard 	
	formulae associated with	
	geometric series and	
	sequences;	
	 know the condition for a 	
	geometric series to be	
	convergent and be able to	
	find its sum to infinity;	
	 be able to solve problems 	
	involving arithmetic and	
	geometric series and	
	sequences;	
	 know the proofs and 	
	derivations of the sum	
	formulae (for both AP and	
	GP).	
	 be familiar with ∑ notation 	
	and how it can be used to	
	generate a sequence and	
	series;	

						· · · · · · · · · · · · · · · · · · ·
		 know how this notation will 				
		lead to an AP or GP and its				
		sum;				
		$\sum_{i=1}^{n} 1 = n$ • Know that a sequence can be generated using a formula for the nth term or a recurrence relation of the form $xn + 1 = f(xn)$; • know the difference between increasing, decreasing and periodic sequences; • understand how a recurrence relation of the form Un = f(Un-1) can generate a sequence;				
		 be able to describe 				
		increasing, decreasing and				
		periodic sequences.				
Binomial	• Expanding $(1 + x)^n$	be able to find the binomial	End of topic	Textbook/Practice	Discerning and Joyful	Pascal's
expansion	• Expanding $(a + bx)^n$	$(1 - r)^{-1}$	assessment	Book/Other online	Students can	triangle
•	 Using nartial 	expansion of $\binom{1-x}{1-x}$ for		resources	appreciate how	U
	fractions	rational values of n and			pascals triangle	Solving
	hactons	x < 1		These include:	simplifies the process	binomial
		11;		1. Videos	of binomial expansion.	problems and
		 be able to find the binomial 		2. Practice	Availability of online	Binomial
		overansion of $(1+x)^n$ for		questions	tutorials and videos	estimation
		rational values of n and		3. Past exam	that show the	from year 1
				questions	relationship between	
		x < 1;		4. Opportunit	pascals triangle and	
				ies for	binomial expansion.	

		he able to find the binomial		flinned	Physics	
		• be able to find the billomial		loarning	Computer Science	
		expansion of $(1+bx)^{n}$ for		learning	Economics	
		rational values of n and			Economics	
		1			Electrical Engineer	
		$ x < \frac{1}{ x }$			Financial Analyst	
					Game Developer	
		• be able to find the binomial				
		expansion of $(a+x)^n$ for				
		rational values of n and				
		x < a;				
		 be able to find the binomial 				
		$(a+bx)^n$				
		expansion of $(a + bar)$ for				
		rational values of n and				
		$\left \frac{bx}{a}\right < 1$				
		 know how to use the 				
		binomial theorem to find				
		approximations (including				
		roots).				
		 be able to use partial 				
		fractions to write a rational				
		function as a series				
		expansion.				
Radians	Badian measure	 understand the definition of 	End of topic	Textbook/Practice	Leading for Justice.	Arc length and
	Arc length	a radian and be able to	assessment	Book/Other online	Truth. and Integrity	sector area
	Areas of sectors	convert between radians		resources	Students can explore	
	and segments	and degrees:			using a different	Further
	 Solving 	 know and be able to use 		These include:	measurement for	trigonometrv
	trigonometric	exact values of sin cos and		1. Videos	angles to analyse the	
	equations	tan:			real-world accurately	
	equations	can,				

	 Small angle approximations 	 be able to derive and use the formulae for arc length and area of sector. understand and be able to use the standard small angle approximations for sine, cosine and tangent. 		 Practice questions Past exam questions Opportunit ies for flipped learning 	Courageous and Resilient Geometry requires students to approach problem- solving with courage and resilience. Solidarity Option for the Poor and Vulnerable.	
					Physics: Understanding angles is relevant in studying concepts such as projectile motion, reflection, refraction, and optics. Construction Carpentry Robotics Navigation	
Trigonometr ic functions	 Secant, cosecant and cotangent Graphs of sec x, cosec x and cot x Using sec x, cosec x and cot x Trigonometric identities 	 understand the secant, cosecant and cotangent functions, and their relationships to sine, cosine and tangent; be able to sketch the graphs of secant, cosecant and cotangent; 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions	Leading for Justice, Truth, and Integrity Students can explore how trigonometry enables us to model and analyse real-world accurately. Geography	Trigonometry identities and equations – year 12

	 Inverse trigonometric functions 	 be able to simplify expressions and solve involving sec, cosec and cot; be able to solve identities involving sec, cosec and cot; know and be able to use the identities 1 + tan2 x = sec2 x and 1 + cot2 x = cosec2 x to prove other identities and solve equations in degrees and/or radians be able to work with the inverse trig functions sin-1, cos-1 and tan-1; be able to sketch the graphs of sin-1, cos-1 and tan-1. 		 Past exam questions Opportunit ies for flipped learning 	STEM Physics Economics Computer Science Economist Data Scientist Architect Aerospace Engineer Access to online maths communities or forums that focus on advanced Trigonometry discussions and how these are applied to problem-solving.	
Trigonometr y and modelling	 Addition formulae Using the angle addition formulae Double-angle formulae Solving trigonometric equations Simplifying a cos x ± b sin x Proving trigonometric identities Modelling with trigonometric functions 	 be able to prove geometrically the following compound angle formulae for sin (A ± B), cos (A ± B) and tan (A ± B); be able to use compound angle identities to rearrange expressions or prove other identities; be able to use compound angle identities to rearrange equations into a different form and then solve; be able to recall or work out double angle identities; be able to use double angle identities to rearrange 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning	Leading for Justice, Truth, and Integrity Students can explore how trigonometry enables us to model and analyse real-world accurately. Geography STEM Physics Economics Computer Science Economist Data Scientist Architect Aerospace Engineer	Trigonometry identities and equations – year 12

		 expressions or prove other identities; be able to use double angle identities to rearrange equations into a different form and then solve. be able to express a cos θ + b sin θ as a single sine or cosine function; be able to solve equations of the form a cos θ + b sin θ = c in a given interval. be able to construct proofs involving trigonometric functions and previously learnt identities. be able to use trigonometric functions to solve problems in context, including problems involving vectors, kinematics and forces. 			Access to online maths communities or forums that focus on advanced Trigonometry discussions and how these are applied to problem-solving.	
Parametric equations	 Parametric equations Using trigonometric identities Curve sketching Points of intersection 	 understand the difference between the Cartesian and parametric system of expressing coordinates; be able to convert between parametric and Cartesian forms. be able to plot and sketch curves given in parametric form; 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions	Discerning and Joyful: By exploring the parametric system, students develop their ability to analyse and discern mathematical patterns, fostering a discerning mindset. Human Dignity Common Good	Coordinate geometry Trigonometric identities Graph sketching

 Modelling with parametric equations 	 recognise some standard curves in parametric form and how they can be used for modelling. 		 Opportunit ies for flipped learning 	Access to supplementary materials or textbooks that offer alternative explanations and problem-solving strategies. Physics computer science Aerospace engineer cryptographer mathematical modeler	
Differentiati on Differentiating sin x and cos x Differentiating exponentials logarithms The chain rule The product rule The quotient rule Differentiating trigonometric functions Parametric differentiation Implicit differentiation Using second derivatives Rates of change by using chain rule	 be able to find the derivative of sin x and cos x from first principles. be able to differentiate functions involving ex, ln x and related functions such as 6e4x and 5 ln 3x and sketch the graphs of these functions; be able to differentiate to find equations of tangents and normals to the curve. be able to differentiate composite functions using the chain rule; be able to differentiate using the product rule; be able to differentiate using the quotient rule; be able to differentiate using the quotient rule; 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning	Leading for Justice, Truth, and Integrity Students can explore how calculus enables us to model and analyse real-world phenomena accurately. By employing calculus, mathematicians and scientists can make informed decisions, solve problems, and gain a deeper understanding of the natural world. Creation and Environment The common good Exposure to diverse cultural contexts and perspectives in	Year 1 Differentiation

 be able to find the gradient 	relation to advanced
at a given point from	calculus techniques
parametric equations;	and their applications
 be able to find the equation 	in various fields such
of a tangent or normal	as physics,
(parametric);	engineering, and
be able to use implicit	economics.
differentiation to	
differentiate an equation	Access to
involving two variables:	supplementary
• be able to find the gradient	materials or
of a curve using implicit	textbooks that offer
differentiation:	alternative
 be able to verify a given 	explanations
point is stationary (implicit)	Solidarity
 be able to find and identify 	Physics
the nature of stationary	Economics
points and understand rates	Computer Science
of change of gradient	Aerospace Engineer
 be able to use a model to 	Economist
find the value after a given	Data Scientist
time:	Architect
 be able to set up and use 	
• be able to set up and use	
logaritimits to solve an	
growth or decay problem:	
growth of decay problem,	
be able to use logarithms to find the base of en	
exponential;	
Know now to model the	
growth or decay of 2D and	
3D objects using connected	
rates of change;	

Numerical methods	 Locating roots by change of sign Using Iteration to solve an equation The Newton- Raphson Method Applications to modelling 	 be able to set up a differential equation using given information which may include direct proportion. be able to locate roots of f(x) = 0 by considering changes of sign of f(x); be able to use numerical methods to find solutions of equations. understand the principle of iteration; appreciate the need for convergence in iteration; be able to use iteration to find terms in a sequence; be able to use cobweb and staircase diagrams; be able to use convergence or divergence for equations of the form x = g(x). be able to solve equations approximately using the Newton-Raphson method; understand how the 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning	United in Harmony Discerning and Joyful Dignity of the Human Person Solidarity Preferential Option for the Poor and Vulnerable Understanding how different cultures and societies have developed and applied numerical methods in various mathematical and scientific disciplines. Familiarity with significant functions and their applications in fields such as	Graph sketching Substitution Differentiation
		 the form x = g(x). be able to solve equations approximately using the Newton-Raphson method; understand how the 			Familiarity with significant functions and their applications in fields such as	
		 Newton-Raphson method works in geometrical terms. be able to use numerical methods to solve problems in context. 			or economics. Science (chemical equations and	

					calculations in chemistry). Economics (modelling and analysis). Physics Computer Science (algorithm design and programming). Actuary Einancial Analyst	
					Data Scientist Software Engineer	
Integration	 Integrating standard functions Integrating f (ax + b) Using trigonometric identities Reverse chain rule Integration by substitution Integration by parts Partial fractions Finding the area under a curve Using the trapezium rule Solving differential equations 	 be able to integrate expressions by inspection using the reverse of differentiation; be able to integrate xn for all values of n and understand 1/x that the integral of x is ln x ; be able to integrate expressions by inspection using the reverse of the chain rule (or function of a function); be able to integrate trigonometric expressions; be able to integrate expressions involving ex.; 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning	Leading for Justice, Truth, and Integrity Students can explore how calculus enables us to model and analyse real-world phenomena accurately. By employing calculus, mathematicians and scientists can make informed decisions, solve problems, and gain a deeper understanding of the natural world. Creation and Environment The common good	Integration year 1 Differentiation Area of 2D shapes Indices

Modelling with differential equations	 be able to integrate a function expressed parametrically. recognise integrals of the	Exposure to diverse cultural contexts and perspectives in relation to advanced calculus techniques and their applications in various fields such as physics, engineering, and economics. Physics Economics Computer Science Aerospace Engineer Economist Data Scientist Architect

	 understand the difference 		
	between an indefinite and		
	definite integral and why we		
	do not need + c;		
	 be able to integrate 		
	polynomials and other		
	functions to find definite		
	integrals, and use these to		
	find the areas of regions		
	bounded by curves and/or		
	lines:		
	 be able to use a definite 		
	integral to find the area		
	under a curve and the area		
	between two curves		
	Be able to find an area under		
	a curve defined by a pair of		
	narametric equations		
	 be able to use the trapezium 		
	• be able to use the trapezium		
	approximation to the area		
	approximation to the area		
	under a curve,		
	 appreciate the trapezium rule is an apprevimation and 		
	rule is an approximation and		
	realise when it gives an		
	overestimate or		
	underestimate.		
	• be able to write a		
	differential equation from a		
	woraea problem;		
	• be able to use a differential		
	equation as a model to solve		
	a problem;		

		 be able to solve a differential equation; be able to substitute the initial conditions or otherwise into the equation to find + c and the general solution. 				
Vectors	 Using 3D coordinates Vectors in 3D Solving geometric problems Application to mechanics 	 be able to extend the work on vectors from AS Pure Mathematics to 3D with column vectors and with the use of i, j and k unit vectors; be able to calculate the magnitude of a 3D vector; know the definition of a unit vector in 3D; be able to add 3D vectors diagrammatically and perform the algebraic operations of vector addition and multiplication by scalars, and understand their geometrical interpretations; understand and use position vectors, and calculate the distance between two 3D points represented by position vectors; be able to use vectors to solve problems in pure mathematics and in contexts (e.g. mechanics). 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning	United in Harmony By learning about 3D vectors, students understand how different components or forces can come together to create a unified result. This value emphasizes the importance of collaboration, teamwork, and recognizing the interconnectedness of various elements. The option for the poor Creation and Environment The common good Participation in STEM camps or workshops that focus on spatial reasoning and geometry.	Year 1 Vectors

					Exposure to real- world examples and applications of vectors through field trips or guest speakers. Physics Geography STEM Electrical engineer Control systems engineer Mathematician Physicist Software developer Architect	
Regression, correlation and hypothesis testing	 Exponential models Measuring correlation Hypothesis testing for zero correlation 	 be able to change the variable in a regression line; be able to estimate values from regression line. understand correlation coefficients; be able to calculate the PMCC (calculator only); be able to interpret a correlation coefficient; be able to conduct a hypothesis test for a correlation coefficient. 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning	Acting with Truth and Integrity Will enable fair conclusions based on predictions Creation and Environment Understanding the cultural significance of certain hypothesis in different communities	Binomial hypothesis testing

					Physiology Politics Sociology Sports Politics Insurance Statistics Meteorologist Actuaries Chartered Accountant	
Conditional probability	 Set notation Conditional probability Conditional probability in Venn diagrams Probability formulae Tree diagrams 	 understand and be able to use probability formulae using set notation; be able to use tree diagrams, Venn diagrams and two-way tables; understand and be able to use the conditional probability formula P(A B) = P(A ∩ B)/P(B) be able to model with probability; be able to critique assumptions made and the 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning	Make sure that pupils understand the fact that mutually exclusive events cannot happen at the same time. This knowledge will help pupils to avoid confusion in later years with independent events. Pupils may also be confused by sentences with the words 'or' and 'and'. Explain the meanings carefully. United in Harmony	Calculating probabilities Venn diagrams Mutually exclusive and independent events Tree diagrams

		likely effect of more realistic assumptions.			Creation and Environment Peace Physiology Politics Sociology Sports Politics Insurance Statistics Meteorologist Actuaries	
The normal distribution	 The normal distribution Finding probabilities for normal distribution The inverse normal distribution function The standard normal distribution Finding Mu and Omega Approximating a binomial distribution Hypothesis testing with the normal distribution 	 understand the properties of the Normal distribution; be able to find probabilities using the Normal distribution; know the position of the points of inflection of a Normal distribution. be able to find the mean and variance of a binomial distribution; understand and be able to apply a continuity correction; be able to use the Normal distribution as an approximation to the binomial distribution. be able to conduct a statistical hypothesis test for the mean of the Normal distribution; 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning	Acting with Truth and Integrity Will enable fair conclusions based on assumptions made using the normal distribution Creation and Environment Peace Physiology Politics Sociology Access to software that allow students to	Probability Averages

		 be able to interpret the results in context. 			visually interpret calculations. Sports Politics Insurance Statistics Meteorologist Actuaries Chartered Accountant	
Moments	 Moments Resultant moments Equilibrium Centres of mass Tilting 	 realise that a force can produce a turning effect; know that a moment of a force is given by the formula force × distance giving Nm and know what the sense of a moment is; understand that the force and distance must be perpendicular to one another; be able to draw mathematical models to represent horizontal rod problems; realise what conditions are needed for a system to remain in equilibrium; 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning	United in harmony Understanding how different forces work together to create equilibrium in a system of moments Dignity of the Human Person Common Good Exposure to real-life examples of moments in daily life, such as using tools, opening doors, or balancing objects	Solving equations Trigonometry

		 be able to solve problems when a bar is on the point of tilting. 			Physics Design & Technology Architect Enginee Product Designer Mechanical Technician	
Forces and friction	 Resolving forces Inclined planes Friction 	 understand the language relating to forces; be able to identify the forces acting on a particle and represent them in a force diagram; understand how to find the resultant force (magnitude and direction); be able to find the resultant of several concurrent forces by vector addition; be able to resolve a force into components and be able to select suitable directions for resolution. understand that a rough plane will have an associated frictional force, which opposes relative motion (i.e. the direction of the frictional force is always opposite to how the object is moving or 'wants' to move); understand that the 'roughness' of two surfaces 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning	Listening and attentive Paying close attention to the effects of forces and friction in different real-life scenarios and listening to feedback for improvement in the mathematical modes Solidarity Option for the Poor and Vulnerable Hands-on experience with tools, machinery, and devices that demonstrate the effects of forces and friction Physics Design & Technology	Kinematics and Forces in Y12 Mechanics

		 is represented by a value called the coefficient of friction represented by μ; know that 0 ≤ μ but that there is no theoretical upper limit for μ although for most surfaces it tends to be less than 1 and that a 'smooth' surface has a value of μ = 0; be able to draw force diagrams involving rough surfaces which include the frictional force understand and be able to use the formula F ≤ μR. 			Mechanical Engineer Aerospace Engineer Automotive Technician	
Projectiles	 Horizontal projection Horizontal and vertical components Projection at any angle Projectile motion formulae 	 be able to find the time of flight of a projectile; be able to find the range and maximum height of a projectile; be able to derive formulae to find the greatest height, the time of flight and the horizontal range (for a full trajectory); know how to modify projectile equations to take account of the height of release; be able to derive and use the equation of the path. 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning	Faith-filled and hopeful Having faith in the mathematical principles behind projectile motion and being hopeful in finding solutions to challenging problems. Dignity of the Human Person Exposure to sports, games, and activities involving the concept of projectiles, such as throwing a ball or	Kinematics in Y12 Mechanics

					shooting a projectile in virtual simulations Physics Physical Education Sports Coach Ballistics Engineer Sports Scientist	
Application of forces	 Static particles Modelling with statics Friction and static particles Static rigid bodies Dynamics and inclined planes Connected particles 	 understand that a body is in equilibrium under a set of concurrent (acting through the same point) forces is if their resultant is zero; know that vectors representing forces in equilibrium form a closed polygon; understand how to solve problems involving equilibrium of a particle under coplanar forces, including particles on inclined planes and 2D vectors; be able to solve statics problems for a system of forces which are not concurrent (e.g. ladder problems), thus applying the principle of moments for forces at any angle. 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning	Courageous and resilient Tackling complex problems involving connected particles with courage and resilience. Subsidiarity Solidarity Knowledge of real- world examples where connected particles are relevant, such as the motion of linked objects, pendulums, or objects attached by springs Physics Design & Technology	Kinematics and Forces in Y12 Mechanics Moments

		 know and understand the meaning of Newton's second law; be able to formulate the equation of motion for a particle in 1-dimensional motion where the resultant force is mass × acceleration; be able to formulate the equation of motion for a particle in 2-dimensional motion where the resultant force is mass × acceleration; be able to formulate and solve separate equations of motion for connected particles, where one of the particles could be on an inclined and/or rough plane. 			Mechanical Engineer Civil Engineer Industrial Designer	
Further kinematics	 Vectors in kinematics Vector methods with projectiles Variable acceleration in one dimension Differentiating vectors Integration vectors 	 be able to recognise when the use of constant acceleration formulae is appropriate; be able to write positions, velocities and accelerations in vector form; understand the language of kinematics appropriate to motion in 2 dimensions be able to find the magnitude and direction of vectors; 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for	Leading for justice Applying vector analysis to ensure fairness and accuracy in representing the direction and magnitude of motion Stewardship of Creation Understanding the use of directions,	Kinematics with calculus and Forces in Y12 Mechanics Calculus Vectors

	flippod	coordinates and	
be able to extend techniques	inpped	coordinates, and	
for motion in 1 dimension to	learning	vectors in navigation,	
2 dimensions by using		mapping, or spatial	
vectors;		awareness	
 know how to use velocity 			
triangles to solve simple		Physics	
problems;		Geography	
 understand and use suvat 			
formulae for constant		GPS Technician	
acceleration in 2D;		Cartographer	
 know how to apply the 		Air Traffic Controller	
equations of motion to i. i			
vector problems:			
• be able to use v = u + at . r =			
$ut + \frac{1}{2}$ at t_{t} with vectors			
given in i , j or column vector			
form.			
 be able to extend techniques 			
for motion in 1 dimension to			
2 dimensions by using			
calculus and vector versions			
of equations for variable			
force/acceleration problems;			
 understand the language 			
and notation of kinematics			
appropriate to variable			
motion in 2 dimensions, i.e.			
knowing the notation \dot{r} and			
\ddot{r} for variable acceleration in			
terms of time.			