Sequenci ng of topics	What knowledge will students develop? (Including key terminology)	What skills will students develop? (Including literacy & numeracy)	Assessment opportunities	Homework opportunities	Personal development (Ursuline Values, Catholic Social Teaching, Cultural Capital, Cross-curricular, Careers)	Curriculum Links
ł	011		Autumn Term			
Complex numbers (part 1)	 Introduction of complex numbers basic manipulation Argand diagrams Modulus and argument Loci 	 be able to solve any quadratic equation with real coefficients; be able to add, subtract and multiply complex numbers in the form x + iy with x and y real; understand and use the terms 'real part' and 'imaginary part'. be able to use and interpret Argand diagrams. be able to convert between the Cartesian form and the modulus-argument form of a complex number; be able to multiply and divide complex numbers in modulus-argument form. be able to construct and interpret simple loci in the Argand diagram such as z - a > r and arg(z - a) = θ. 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning	 United in Harmony: Teaching complex numbers emphasizes the interconnectedness of real and imaginary components. By exploring the unity and harmony of these components, students can develop a deeper appreciation for the beauty and elegance of complex numbers. Call to Family, Community, and Participation Solidarity Access to online math communities or forums that focus on complex number discussions and problem-solving. Physics Computer Science Electrical engineer 	Quadratics Equations and inequalities

					Control systems
					engineer
					Mathematician
					Physicist
					Software developer
Matrices	 Matrix addition, subtraction and multiplication Inverse of 2×2 and 3×3 	 be able to calculate determinants of 2×2 and 3×3 matrices; understand and use singular and non-singular matrices; 	assessment	Textbook/Practice Book/Other online resources These include:	United in Harmony: Matrices provide a unified framework for solving systems of equations and
	matrices • Simultaneous equations Linear transformations	 be able to know the properties of inverse matrices; be able to calculate the inverse of non-singular 2×2 and 3×3 matrices. be able to use matrices and their inverses to solve linear simultaneous equations, including three linear simultaneous equations in three variables; be able to interpret geometrically the solution and failure of solution of three simultaneous linear equations. be able to use matrices to represent 2D rotations, reflections, enlargements and translations; understand and use zero and 		 Videos Practice questions Past exam questions Opportunit ies for flipped learning 	representing transformations, promoting harmony in mathematical understanding. Human Dignity Common Good Exposure to real-world examples and applications of matrices through field trips or guest speakers. computer science physics economics. Data Analyst Statistician Computer Programmer
		 identity matrices; be able to use matrix products to represent combinations of transformations; 			

		 be able to use matrices to represent linear transformations in three dimensions; be able to use inverse matrices to reverse the effect of a linear transformation; be able to use the determinant of a matrix to determine the area scale factor of a transformation; be able to find invariant points and lines for a linear transformation. 				
Complex numbers (part 2)	Complex conjugate, division and solving polynomial equations	 understand and use the complex conjugate of a complex number; be able to divide two complex numbers by using the complex conjugate of the denominator; know that non-real roots of polynomial equations with real coefficients occur in conjugate pairs; be able to solve cubic or quartic equations with real coefficients. 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning	 United in Harmony: Teaching complex numbers emphasizes the interconnectedness of real and imaginary components. By exploring the unity and harmony of these components, students can develop a deeper appreciation for the beauty and elegance of complex numbers. Call to Family, Community, and Participation Solidarity 	Complex numbers (part 1)

					 Exposure to diverse cultural contexts and perspectives in relation to complex number systems and their historical development Physics Computer Science Electrical engineer Control systems engineer Mathematician Physicist Software developer 	
Series	Sums of series	 be able to use sigma notation; understand and use formulae for the sums of integers, squares and cubes; be able to use known formulae to sum more complex series. 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning	 Grateful and Generous: By studying and understanding various types of series, students can appreciate the beauty and richness of mathematical patterns and sequences. Students can also apply the concept of series in practical contexts, such as financial planning or analyzing real-world data, fostering a spirit of generosity in making informed 	Quadratics Equations and inequalities

					decisions and sharing their insights with others. Solidarity Option for the Poor Attendance at math conferences or workshops that discuss series convergence and divergence. Physics Financial analyst Actuary Mathematician
Algebra and functions	 Roots of polynomial equations Formation of polynomial equations 	 understand and use the relationship between roots and coefficients of polynomial equations up to quartic equations. be able to form a polynomial equation whose roots are a linear transformation of the roots of a given polynomial equation (of at least cubic degree). 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning	 Discerning and Joyful: By exploring the roots of polynomials, students develop their ability to analyse and discern mathematical patterns, fostering a discerning mindset. Human Dignity Common Good Access to supplementary materials or textbooks that offer alternative explanations and problem-solving strategies. Physics computer science Quadratics Equations and inequalities Binomial expansion Equations and problem-solving computer science

	cryptographer,
Proof Proof by mathematical induction be able to obtain a proof for the summation of a series, using induction; be able to use proof by induction to prove that an expression is divisible by a certain integer; be able to use mathematical induction to prove general statements involving matrix multiplication. Textbook/Practice Book/Other online resources Videos Practice questions Past exam questions Opportunit ies for flipped learning Spring Term	 Courageous and Resilient Induction proofs often involve demonstrating a statement holds true for all-natural numbers by establishing a base case and employing an inductive step. This process may involve working with unfamiliar or challenging concepts and requiring persistence and resilience in overcoming obstacles. Truth and Integrity Exposure to mathematical journals or articles that showcase proofs by induction. Computer science Physics Software developer mathematician research scientist

Vectors	a Master and	a lunavy have to find the vester	End of tonic	Toythook/Practico	• United in Hormony
vectors	vector and	know now to find the vector		Textbook/Practice	United in Harmony
	Cartesian	equation of a line in both two	assessment	BOOK/Other online	By learning about
	equations of a	and three dimensions;		resources	vectors, students
	line and a plane	 understand and use the 			understand how
	 Scalar product 	Cartesian forms of an		These include:	different components
	Problems involving	equation of a straight line in		1. Videos	or forces can come
	points, lines and	three dimensions;		2. Practice	together to create a
	planes	• understand and use the vector		questions	unified result. This
		and Cartesian forms of the		3. Past exam	value emphasizes the
		equation of a plane.		questions	importance of
		• be able to find the scalar		4. Opportunit	collaboration,
		product of two vectors;		ies for	teamwork, and
		• be able to check whether		flipped	recognizing the
		vectors are perpendicular by		lippeu	interconnectedness of
		using the scalar product;		learning	various elements.
		• be able to use the scalar			Option for the Poor
		product to express the			Participation in STEM
		equation of a plane;			camps or workshops
		• be able to use the scalar			that focus on spatial
		product to calculate the angle			reasoning and
		between two lines:			geometry.
		 be able to use the scalar 			Physics
		product to calculate the angle			Computer science
		between two planes:			Architect
		 be able to use the scalar 			Civil engineer
		product to calculate the angle			video game designer
		between a line and a plane			• Video game designer
		 between a line and a plane. be able to find the points of 			
		intersection of lines and			
		nlanos which most:			
		planes which meet,			
		De able to calculate the			
		perpendicular distance			
		between two lines;			

		 be able to calculate the perpendicular distance from a point to a line or to a plane. 				
Calculus	Volumes of revolution	 be able to derive formulae for and calculate volumes of revolution about both the x and y-axes. 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for flipped learning	 United in Harmony the volume of revolution brings together geometry and calculus. Students can develop an appreciation for the unity and harmony in mathematics and recognize the beauty in seeing diverse mathematical ideas come together. Grateful and Generous Access to 3D modelling software or virtual reality tools that allow students to visualize volumes of revolution. Physics Structural engineer industrial designer mathematician 	Calculus
Momentu	Momentum	• understand the definitions,	End of topic	Textbook/Practice	Leading for Justice	Kinematics
m and	and impulse;	derivation, and units of	assessment	Book/Other online	Students can explore	
(part 1)	derivation of	momentum and impulse;		resources	now the principles of	
(part I)	formulae	 understand what happens to 		Those include:	conservation of	
	Tormulae	the momentum of a sphere as			momentum and	
		a result of a collision;		1. Videos	impulse align with the	

	 Impulse- momentum principle. Conservation of momentum applied to collisions and 'jerking' string problems 	 be able to use the principle of conservation of momentum applied to direct collisions in 1-dimension. 		 Practice questions Past exam questions Opportunit ies for flipped learning 	 pursuit of justice and truth, as these concepts provide a foundation for understanding the dynamics of interactions and the equality of action and reaction. Human Dignity Common Good Having access to mentors or coaches who can provide guidance and support in understanding and applying principles of momentum and impulse. Physics Physical Education Mechanical engineer Sports scientist Automotive engineer 	
Work, energy and power	 Work, kinetic energy; derivation of units and formulae Potential energy, work- energy principle, conservation of 	 understand the derivation, units and definitions of work and energy; be able to define kinetic energy (KE); understand that work done on a body moving in a horizontal plane is the change in kinetic energy. 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions	 Leading for Justice students can critically analyse energy- related issues, such as access to energy resources, environmental sustainability, and social equity. They can become informed 	Kinematics

	mechanical energy, problem solving Power; derivation of units and formula	 understand the concept of gravitational potential energy (GPE); be able to include GPE when applying the work-energy principle; know the conditions for conservation of mechanical energy; be able to solve problems involving work and energy. understand that power in watts is the rate of doing work; be able to calculate the power (P) of a vehicle with a tractive (driving) force F, moving with velocity v; be able to use the formula P = Fv in problem solving. 		 Past exam questions Opportunit ies for flipped learning 	advocates for responsible energy practices and strive for a more just and sustainable world. Solidarity Option for the Poor and Vulnerable Access to educational resources such as books, online tutorials, or workshops that enhance understanding of work, energy, and power concepts. Physics Design & Technology Renewable energy engineer Environmental scientist Electrical engineer
Elastic collisions in one dimension	 Direct impact of elastic spheres. Newton's law of restitution. Loss of kinetic energy due to impact Problem solving (including 'successive' impacts) 	 be able to express the 'compressibility', 'bounciness' or 'elasticity' of an object by a value called the coefficient of restitution (e); know that 0 ≤ e ≤ 1 [and that e = 0 means inelastic and e =1 means perfectly elastic]; know and be able to use Newton's (experimental) law 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions	 Leading for Justice, Truth, and Integrity an opportunity to discuss the importance of justice, truth, and integrity in physics and related fields. Students can explore how the conservation laws,

					· · · · · · · · · · · · · · · · · · ·
		 of restitution for direct impacts of elastic spheres; be able to calculate the change in kinetic energy due to an impact. be able to solve problems of the following types involving elastic impacts: successive collisions between pairs of spheres (horizontal motion); bouncing ball (off a horizontal elastic plane); successive collisions including two spheres and sphere against a wall; determination of number of collisions or deriving the possible range of e. 		 3. Past exam questions 4. Opportunit ies for flipped learning 	such as conservation of momentum and kinetic energy, align with the pursuit of justice and truth. Subsidiarity Stewardship of Creation Exposure to scientific museums or exhibits that showcase principles of elastic collisions. Physics Astrophysicist Aerospace engineer Crash test engineer
Momentu m and impulse	 Momentum as a vector (i, j problems) Impulse-momentum principle in vector form 	 be able to extend the definition of linear momentum and impulse to 2-D using vectors. be able to use the impulse-momentum principle in vector form i.e. I = mv – mu. 	End of topic assessment	Textbook/Practice Book/Other online resources These include: 1. Videos 2. Practice questions 3. Past exam questions 4. Opportunit ies for	 Leading for Justice Students can explore how the principles of conservation of momentum and impulse align with the pursuit of justice and truth, as these concepts provide a foundation for understanding the dynamics of interactions and the

				flinned	equality of action and
				loorning	reaction
				learning	Human Dignity
					Common Good
					Having access to
					mentors or coaches
					who can provide
					guidance and support
					in understanding and
					applying principles of
					momentum and
					impulse.
					Physics
					Physical Education
					Mechanical engineer
					Sports scientist
					Automotive engineer
Elastic	• Hooke's law and	• be able to investigate the	End of topic	Textbook/Practice	Discerning and Joyful
strings and	definition of	ability of strings to stretch and	assessment	Book/Other online	Hooke's law
springs	modulus of	springs to stretch and		resources	encourages students
and elastic	elasticity.	compress:			to discern patterns
energy	Derivation of	 be able to define the modulus 		These include:	and relationships
0,	elastic potential	of elasticity (λ) natural length		1. Videos	hetween annlied
	energy formula	(a) and extension (x):		2 Practice	forces and resulting
	Problem solving:	 bo able to use the above 		2. Tractice	displacements in
	equilibrium and	 be able to use the above definitions to work out the 		questions	alastic materials
	equilibrium and	demilitions to work out the		3. Past exam	
	using the work-	tension in a stretched string or		questions	• Care for God s
	energy principle	a stretched/compressed		4. Opportunit	Creation
		spring i.e. use Hooke's Law, I		ies for	Option for the Poor
		$=\frac{\lambda\lambda}{a}$;		flipped	and Vulnerable
		• be able to derive the elastic		learning	Visiting science
		potential energy (EPE) from		0	museums or
		Hooke's Law by applying the			exhibitions: Museums
					often have interactive

		 work done in stretching a string/spring . i.e. EPE = λx²/2a. be able to calculate the tension in a string or spring when a system is held in equilibrium; be able to include EPE when using the work-energy principle; know the conditions for conservation of mechanical energy; be able to solve string/spring problems involving work and energy (i.e. KE, GPE and EPE). 			exhibits that demonstrate the principles of Hooke's law. Visitors can engage with displays showcasing springs, rubber bands, or other elastic materials and observe the relationship between force and displacement. Physics Design & Technology Materials engineer Civil engineer Product designer
Elastic collisions	Oblique impact of a smooth	 understand that during an impact the impulse acts 	End of topic assessment	Textbook/Practice Book/Other online	Leading for Justice, Truth, and Integrity
dimension s	 sphere with a fixed surface Successive 	through the centre of the surface sphere;		These include:	 an opportunity to discuss the importance of justice, tmth and intensity in
	oblique impacts of a sphere with smooth plane surfaces	 be able to apply Newton's (experimental) law of restitution in the direction of the impulse; 		 Videos Practice questions 	truth, and integrity in physics and related fields. Students can

 be able to calculate the kinetic energy 'lost' in an impact; be able to work in speeds and angles or in velocity vectors (i, j). understand that, during a collision between two smooth spheres, total momentum is conserved and the impulse acts in the direction of the line of centres; be able to apply Newton's (experimental) law of restitution in the direction of the line of centres; appreciate that perpendicular to the line of centres, velocity components do not change; understand and be able to calculate an angle of deflection; be able to calculate the kinetic energy 'lost' in a collision; be able to work in speeds and angles or in velocity vectors (i, j). 	 Common Good Access to virtual simulations or computer programs that allow exploration and visualization of two-dimensional elastic collisions. Physics Robotics engineer Computer game developer Biomechanical engineer
J).	